EXAM COMPLEX ANALYSIS, January 29th, 2020, 15:00pm-18:00pm, Aletta Jacobshal 01.

Put your name on every sheet of paper you hand in. Please provide complete arguments for each of your answers. The exam consists of 5 questions. You can score up to 9 points for each question, and you obtain 5 points for free.

In this way you will score in total between 5 and 50 points.

- (1) Recall that the real function arctan sends any $\lambda \in \mathbb{R}$ to the unique η in the open interval $\left(-\frac{1}{2}\pi,\frac{1}{2}\pi\right)$ such that $\tan \eta = \lambda$. Consider $D := \{z \in \mathbb{C} \mid \operatorname{Re}(z) > 0\} \subset \mathbb{C}$, and define $f: D \to \mathbb{C}$ as follows. Let $z \in D$ and write z = x + iy with $x, y \in \mathbb{R}$ and x > 0. Then $f(z) = (x^2 + y^2)^{\frac{1}{4}} e^{\frac{1}{2}i \arctan(y/x)}.$
 - (a) [3 points.] Use the Cauchy-Riemann relations to show that f(z) is analytic on D.

(b) [3 points.] Show that $f(z) = \sqrt{z}$ when $z \in D$ is real.

- (c) [3 points.] Use 'analytic continuation' and (b) to draw a conclusion about f(z) for all $z \in D$.
- (2) Take $\alpha = \frac{1}{2}\pi + i\log(2) \in \mathbb{C}$ (here $\log(2)$ is simply the classical real natural logarithm), and consider the complex function $f(z) = \frac{\sin z}{z-\alpha}$.
 - (a) [3 points.] Explain why f(z) is analytic in every point of $\mathbb{C} \setminus \{\alpha\}$.

(b) [2 points.] Compute the residue of f(z) in $z = \alpha$.

- (c) [4 points.] Use appropriate closed contours in \mathbb{C} to determine $\lim_{R\to\infty}\int_{-R}^{R}f(z)\,dz$.
- (3) This exercise intends to calculate a certain goniometric integral. Take $f(z) = \frac{1}{2z^2 + 5iz 2}$.

(a) [2 points.] Show that f(z) has exactly one pole in the disc given by |z| < 1.

(b) [3 points.] Compute the residue of f(z) in $z = -\frac{1}{2}i$.

(c) [2 points.] For C the circle parametrized by $t\mapsto e^{it}$ (with $0\leq t\leq 2\pi$), show that $\int_C f(z)\,dz=\int_0^{2\pi}\frac{dt}{5+4\sin t}.$ (d) [2 points.] Calculate $\int_0^{2\pi}\frac{dt}{5+4\sin t}.$

(4) Consider the polynomial $p(z) = z^5 - 10z - 12$

(a) [3 points.] Show that for |z| = 1 one has $|z^5| < |-10z - 12|$.

(b) [3 points.] Prove that $\int_C \frac{dz}{p(z)} = 0$ where C denotes the closed contour parametrized by $t \mapsto e^{-it}$ (with $0 \le t \le 2\pi$).

(c) [3 points.] Show that every zero of p(z) satisfies |z| < 3.

(5) Take a real constant B > 1 and consider the closed contour $\Gamma_B = \alpha_B + \beta_B - \gamma_B$, with $\alpha_B \colon [0, B] \to \mathbb{C}$ given by $\alpha_B(t) = t$ and $\beta_B \colon [0, \frac{1}{2}\pi] \to \mathbb{C}$ given by $\beta_B(t) = e^{it}$ and $\gamma_B \colon [0, B] \to \mathbb{C}$ given by $\gamma_B(t) = it$.

- (a) [2 points.] Show that $\int_{\alpha_B-\gamma_B} \frac{dz}{z^4+1} = (1-i) \int_0^B \frac{dt}{t^4+1}$. (b) [2 points.] Show that the function $\frac{1}{z^4+1}$ has a pole inside the contour Γ_B with residue $-\frac{1}{8}\sqrt{2}\cdot(1+i).$
- (c) [1 point.] Show that if w is a point on β_B , then $\left|\frac{1}{w^4+1}\right| \leq \frac{1}{B^4-1}$.
- (d) [2 points.] Prove that $\lim_{B\to\infty} \int_{\beta_B} \frac{dz}{z^4+1} = 0$. (e) [2 points.] Determine $\int_0^\infty \frac{dt}{t^4+1}$.